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CHAPTER ONE

Variable Coefficient, Second Order, Linear,
Ordinary Differential Equations

Many physical, chemical and biological systems can be described using mathemat-
ical models. Once the model is formulated, we usually need to solve a differential
equation in order to predict and quantify the features of the system being mod-
elled. As a precursor to this, we consider linear, second order ordinary differential
equations of the form

P (x)
d 2y

dx2
+Q(x)

dy

dx
+R(x)y = F (x),

with P (x), Q(x) and R(x) finite polynomials that contain no common factor. This
equation is inhomogeneous and has variable coefficients. The form of these poly-
nomials varies according to the underlying physical problem that we are studying.
However, we will postpone any discussion of the physical origin of such equations
until we have considered some classical mathematical models in Chapters 2 and 3.

After dividing through by P (x), we obtain the more convenient, equivalent form,

d 2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = f(x). (1.1)

This process is mathematically legitimate, provided that P (x) �= 0. If P (x0) = 0
at some point x = x0, it is not legitimate, and we call x0 a singular point of the
equation. If P (x0) �= 0, x0 is a regular or ordinary point of the equation. If
P (x) �= 0 for all points x in the interval where we want to solve the equation, we
say that the equation is nonsingular, or regular, on the interval.

We usually need to solve (1.1) subject to either initial conditions of the form
y(a) = α, y′(a) = β or boundary conditions, of which y(a) = α and y(b) = β
are typical examples. It is worth reminding ourselves that, given the ordinary dif-
ferential equation and initial conditions (an initial value problem), the objective
is to determine the solution for other values of x, typically, x > a, as illustrated in
Figure 1.1. As an example, consider a projectile. The initial conditions are the po-
sition of the projectile and the speed and angle to the horizontal at which it is fired.
We then want to know the path of the projectile, given these initial conditions.

For initial value problems of this form, it is possible to show that:

(i) If a1(x), a0(x) and f(x) are continuous on some open interval I that contains
the initial point a, a unique solution of the initial value problem exists on
the interval I, as we shall demonstrate in Chapter 8.
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calculate the
solution for x > a

given y(a) = α
and y'(a) = β

y

α

a x

Fig. 1.1. An initial value problem.

(ii) The structure of the solution of the initial value problem is of the form

y = Au1(x) +B u2(x)︸ ︷︷ ︸
Complementary function

+ G(x)︸ ︷︷ ︸
Particular integral

,

where A, B are constants that are fixed by the initial conditions and u1(x)
and u2(x) are linearly independent solutions of the corresponding homoge-
neous problem y′′ + a1(x)y′ + a0(x)y = 0.

These results can be proved rigorously, but nonconstructively, by studying the
operator

Ly ≡ d 2y

dx2
+ a1(x)

dy

dx
+ a0(x)y,

and regarding L : C2(I) → C0(I) as a linear transformation from the space of
twice-differentiable functions defined on the interval I to the space of continuous
functions defined on I. The solutions of the homogeneous equation are elements
of the null space of L. This subspace is completely determined once its basis
is known. The solution of the inhomogeneous problem, Ly = f , is then given
formally as y = L−1f . Unfortunately, if we actually want to construct the solution
of a particular equation, there is a lot more work to do.

Before we try to construct the general solution of the inhomogeneous initial value
problem, we will outline a series of subproblems that are more tractable.
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1.1 The Method of Reduction of Order

As a first simplification we discuss the solution of the homogeneous differential
equation

d 2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = 0, (1.2)

on the assumption that we know one solution, say y(x) = u1(x), and only need to
find the second solution. We will look for a solution of the form y(x) = U(x)u1(x).
Differentiating y(x) using the product rule gives

dy

dx
=
dU

dx
u1 + U

du1

dx
,

d 2y

dx2
=
d 2U

dx2
u1 + 2

dU

dx

du1

dx
+ U

d 2u1

dx2
.

If we substitute these expressions into (1.2) we obtain

d 2U

dx2
u1 + 2

dU

dx

du1

dx
+ U

d 2u1

dx2
+ a1(x)

(
dU

dx
u1 + U

du1

dx

)
+ a0(x)Uu1 = 0.

We can now collect terms to get

U

(
d 2u1

dx2
+ a1(x)

du1

dx
+ a0(x)u1

)
+ u1

d 2U

dx2
+
dU

dx

(
2
du1

dx
+ a1u1

)
= 0.

Now, since u1(x) is a solution of (1.2), the term multiplying U is zero. We have
therefore obtained a differential equation for dU/dx, and, by defining Z = dU/dx,
have

u1
dZ

dx
+ Z
(

2
du1

dx
+ a1u1

)
= 0.

Dividing through by Zu1 we have

1
Z

dZ

dx
+

2
u1

du1

dx
+ a1 = 0,

which can be integrated directly to yield

log |Z| + 2 log |u1| +
∫ x

a1(s) ds = C,

where s is a dummy variable, for some constant C. Thus

Z =
c

u2
1

exp
{
−
∫ x

a1(s) ds
}

=
dU

dx

where c = eC . This can then be integrated to give

U(x) =
∫ x c

u2
1(t)

exp
{
−
∫ t

a1(s) ds
}
dt+ c̃,

for some constant c̃. The solution is therefore
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y(x) = u1(x)
∫ x c

u2
1(t)

exp
{
−
∫ t

a1(s) ds
}
dt+ c̃u1(x).

We can recognize c̃u1(x) as the part of the complementary function that we knew
to start with, and

u2(x) = u1(x)
∫ x 1

u2
1(t)

exp
{
−
∫ t

a1(s)ds
}
dt (1.3)

as the second part of the complementary function. This result is called the reduc-
tion of order formula.

Example

Let’s try to determine the full solution of the differential equation

(1 − x2)
d 2y

dx2
− 2x

dy

dx
+ 2y = 0,

given that y = u1(x) = x is a solution. We firstly write the equation in standard
form as

d 2y

dx2
− 2x

1 − x2

dy

dx
+

2
1 − x2

y = 0.

Comparing this with (1.2), we have a1(x) = −2x/(1 − x2). After noting that∫ t

a1(s) ds =
∫ t

− 2s
1 − s2 ds = log(1 − t2),

the reduction of order formula gives

u2(x) = x

∫ x 1
t2

exp
{− log(1 − t2)} dt = x

∫ x dt

t2(1 − t2) .

We can express the integrand in terms of its partial fractions as

1
t2(1 − t2) =

1
t2

+
1

1 − t2 =
1
t2

+
1

2(1 + t)
+

1
2(1 − t) .

This gives the second solution of (1.2) as

u2(x) = x

∫ x{ 1
t2

+
1

2(1 + t)
+

1
2(1 − t)

}
dt

= x

[
−1
t

+
1
2

log
(

1 + t
1 − t

)]x
=
x

2
log
(

1 + x
1 − x

)
− 1,

and hence the general solution is

y = Ax+B
{
x

2
log
(

1 + x
1 − x

)
− 1
}
.
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1.2 The Method of Variation of Parameters

Let’s now consider how to find the particular integral given the complementary
function, comprising u1(x) and u2(x). As the name of this technique suggests, we
take the constants in the complementary function to be variable, and assume that

y = c1(x)u1(x) + c2(x)u2(x).

Differentiating, we find that

dy

dx
= c1

du1

dx
+ u1

dc1
dx

+ c2
du2

dx
+ u2

dc2
dx
.

We will choose to impose the condition

u1
dc1
dx

+ u2
dc2
dx

= 0, (1.4)

and thus have
dy

dx
= c1

du1

dx
+ c2

du2

dx
,

which, when differentiated again, yields

d 2y

dx2
= c1

d 2u1

dx2
+
du1

dx

dc1
dx

+ c2
d 2u2

dx2
+
du2

dx

dc2
dx
.

This form can then be substituted into the original differential equation to give

c1
d 2u1

dx2
+
du1

dx

dc1
dx

+ c2
d 2u2

dx2
+
du2

dx

dc2
dx

+ a1

(
c1
du1

dx
+ c2

du2

dx

)
+ a0 (c1u1 + c2u2) = f.

This can be rearranged to show that

c1

(
d 2u1

dx2
+ a1

du1

dx
+ a0u1

)
+ c2

(
d 2u2

dx2
+ a1

du2

dx
+ a0u2

)
+
du1

dx

dc1
dx

+
du2

dx

dc2
dx

= f.

Since u1 and u2 are solutions of the homogeneous equation, the first two terms are
zero, which gives us

du1

dx

dc1
dx

+
du2

dx

dc2
dx

= f. (1.5)

We now have two simultaneous equations, (1.4) and (1.5), for c′1 = dc1/dx and
c′2 = dc2/dx, which can be written in matrix form as(

u1 u2

u′1 u′2

)(
c′1
c′2

)
=
(

0
f

)
.

These can easily be solved to give

c′1 = −fu2

W
, c′2 =

fu1

W
,

where

W = u1u
′
2 − u2u

′
1 =
∣∣∣∣ u1 u2

u′1 u′2

∣∣∣∣
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is called the Wronskian. These expressions can be integrated to give

c1 =
∫ x

−f(s)u2(s)
W (s)

ds+A, c2 =
∫ x f(s)u1(s)

W (s)
ds+B.

We can now write down the solution of the entire problem as

y(x) = u1(x)
∫ x

−f(s)u2(s)
W (s)

ds+ u2(x)
∫ x f(s)u1(s)

W (s)
ds+Au1(x) +Bu2(x).

The particular integral is therefore

y(x) =
∫ x

f(s)
{
u1(s)u2(x) − u1(x)u2(s)

W (s)

}
ds. (1.6)

This is called the variation of parameters formula.

Example

Consider the equation

d 2y

dx2
+ y = x sinx.

The homogeneous form of this equation has constant coefficients, with solutions

u1(x) = cosx, u2(x) = sinx.

The variation of parameters formula then gives the particular integral as

y =
∫ x

s sin s
{

cos s sinx− cosx sin s
1

}
ds,

since

W =
∣∣∣∣ cosx sinx
− sinx cosx

∣∣∣∣ = cos2 x+ sin2 x = 1.

We can split the particular integral into two integrals as

y(x) = sinx
∫ x

s sin s cos s ds− cosx
∫ x

s sin2 s ds

=
1
2

sinx
∫ x

s sin 2s ds− 1
2

cosx
∫ x

s (1 − cos 2s) ds.

Using integration by parts, we can evaluate this, and find that

y(x) = −1
4
x2 cosx+

1
4
x sinx+

1
8

cosx

is the required particular integral. The general solution is therefore

y = c1 cosx+ c2 sinx− 1
4
x2 cosx+

1
4
x sinx.

Although we have given a rational derivation of the reduction of order and vari-
ation of parameters formulae, we have made no comment so far about why the
procedures we used in the derivation should work at all! It turns out that this has
a close connection with the theory of continuous groups, which we will investigate
in Chapter 10.
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1.2.1 The Wronskian
Before we carry on, let’s pause to discuss some further properties of the Wronskian.

Recall that if V is a vector space over R, then two elements v1,v2 ∈ V are linearly
dependent if ∃ α1, α2 ∈ R, with α1 and α2 not both zero, such that α1v1+α2v2 = 0.

Now let V = C1(a, b) be the set of once-differentiable functions over the interval
a < x < b. If u1, u2 ∈ C1(a, b) are linearly dependent, ∃ α1, α2 ∈ R such that
α1u1(x) + α2u2(x) = 0 ∀x ∈ (a, b). Notice that, by direct differentiation, this also
gives α1u

′
1(x) + α2u

′
2(x) = 0 or, in matrix form,(

u1(x) u2(x)
u′1(x) u′2(x)

)(
α1

α2

)
=
(

0
0

)
.

These are homogeneous equations of the form

Ax = 0,

which only have nontrivial solutions if det(A) = 0, that is

W =
∣∣∣∣ u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ = u1u
′
2 − u′1u2 = 0.

In other words, the Wronskian of two linearly dependent functions is identically
zero on (a, b). The contrapositive of this result is that if W �≡ 0 on (a, b), then u1

and u2 are linearly independent on (a, b).

Example

The functions u1(x) = x2 and u2(x) = x3 are linearly independent on the interval
(−1, 1). To see this, note that, since u1(x) = x2, u2(x) = x3, u′1(x) = 2x, and
u′2(x) = 3x2, the Wronskian of these two functions is

W =
∣∣∣∣ x2 x3

2x 3x2

∣∣∣∣ = 3x4 − 2x4 = x4.

This quantity is not identically zero, and hence x2 and x3 are linearly independent
on (−1, 1).

Example

The functions u1(x) = f(x) and u2(x) = kf(x), with k a constant, are linearly
dependent on any interval, since their Wronskian is

W =
∣∣∣∣ f kf
f ′ kf ′

∣∣∣∣ = 0.

If the functions u1 and u2 are solutions of (1.2), we can show by differentiating
W = u1u

′
2 − u′1u2 directly that

dW

dx
+ a1(x)W = 0.



10 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL EQUATIONS

This first order differential equation has solution

W (x) = W (x0) exp
{
−
∫ x

x0

a1(t)dt
}
, (1.7)

which is known as Abel’s formula. This gives us an easy way of finding the
Wronskian of the solutions of any second order differential equation without having
to construct the solutions themselves.

Example

Consider the equation

y′′ +
1
x
y′ +
(

1 − 1
x2

)
y = 0.

Using Abel’s formula, this has Wronskian

W (x) = W (x0) exp
{
−
∫ x

x0

dt

t

}
=
x0W (x0)

x
=
A

x

for some constant A. To find this constant, it is usually necessary to know more
about the solutions u1(x) and u2(x). We will describe a technique for doing this in
Section 1.3.

We end this section with a couple of useful theorems.

Theorem 1.1 If u1 and u2 are linearly independent solutions of the homoge-
neous, nonsingular ordinary differential equation (1.2), then the Wronskian is either
strictly positive or strictly negative.

Proof From Abel’s formula, and since the exponential function does not change
sign, the Wronskian is identically positive, identically negative or identically zero.
We just need to exclude the possibility that W is ever zero. Suppose that W (x1) =

0. The vectors
(
u1(x1)
u′1(x1)

)
and
(
u2(x1)
u′2(x1)

)
are then linearly dependent, and

hence u1(x1) = ku2(x1) and u′1(x) = ku′2(x) for some constant k. The function
u(x) = u1(x)−ku2(x) is also a solution of (1.2) by linearity, and satisfies the initial
conditions u(x1) = 0, u′(x1) = 0. Since (1.2) has a unique solution, the obvious
solution, u ≡ 0, is the only solution. This means that u1 ≡ ku2. Hence u1 and u2

are linearly dependent – a contradiction.

The nonsingularity of the differential equation is crucial here. If we consider the
equation x2y′′ − 2xy′ + 2y = 0, which has u1(x) = x2 and u2(x) = x as its linearly
independent solutions, the Wronksian is −x2, which vanishes at x = 0. This is
because the coefficient of y′′ also vanishes at x = 0.

Theorem 1.2 (The Sturm separation theorem) If u1(x) and u2(x) are the
linearly independent solutions of a nonsingular, homogeneous equation, (1.2), then
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the zeros of u1(x) and u2(x) occur alternately. In other words, successive zeros of
u1(x) are separated by successive zeros of u2(x) and vice versa.

Proof Suppose that x1 and x2 are successive zeros of u2(x), so that W (xi) =
u1(xi)u′2(xi) for i = 1 or 2. We also know that W (x) is of one sign on [x1, x2],
since u1(x) and u2(x) are linearly independent. This means that u1(xi) and u′2(xi)
are nonzero. Now if u′2(x1) is positive then u′2(x2) is negative (or vice versa), since
u2(x2) is zero. Since the Wronskian cannot change sign between x1 and x2, u1(x)
must change sign, and hence u1 has a zero in [x1, x2], as we claimed.

As an example of this, consider the equation y′′+ω2y = 0, which has solution y =
A sinωx+B cosωx. If we consider any two of the zeros of sinωx, it is immediately
clear that cosωx has a zero between them.

1.3 Solution by Power Series: The Method of Frobenius

Up to this point, we have considered ordinary differential equations for which we
know at least one solution of the homogeneous problem. From this we have seen that
we can easily construct the second independent solution and, in the inhomogeneous
case, the particular integral. We now turn our attention to the more difficult
case, in which we cannot determine a solution of the homogeneous problem by
inspection. We must devise a method that is capable of solving variable coefficient
ordinary differential equations in general. As we noted at the start of the chapter,
we will restrict our attention to the case where the variable coefficients are simple
polynomials. This suggests that we can look for a solution of the form

y = xc
∞∑

n=0

anx
n =

∞∑
n=0

anx
n+c, (1.8)

and hence

dy

dx
=

∞∑
n=0

an(n+ c)xn+c−1, (1.9)

d 2y

dx2
=

∞∑
n=0

an(n+ c)(n+ c− 1)xn+c−2, (1.10)

where the constants c, a0, a1, . . . , are as yet undetermined. This is known as the
method of Frobenius. Later on, we will give some idea of why and when this
method can be used. For the moment, we will just try to make it work. We proceed
by example, with the simplest case first.

1.3.1 The Roots of the Indicial Equation Differ by an Integer
Consider the equation

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − 1

4

)
y = 0. (1.11)
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We substitute (1.8) to (1.10) into (1.11), which gives

x2
∞∑

n=0

an(n+ c)(n+ c− 1)xn+c−2 + x
∞∑

n=0

an(n+ c)xn+c−1

+
(
x2 − 1

4

) ∞∑
n=0

anx
n+c = 0.

We can rearrange this slightly to obtain
∞∑

n=0

an

{
(n+ c)(n+ c− 1) + (n+ c) − 1

4

}
xn+c +

∞∑
n=0

anx
n+c+2 = 0,

and hence, after simplifying the terms in the first summation,
∞∑

n=0

an

{
(n+ c)2 − 1

4

}
xn+c +

∞∑
n=0

anx
n+c+2 = 0.

We now extract the first two terms from the first summation to give

a0

(
c2 − 1

4

)
xc + a1

{
(c+ 1)2 − 1

4

}
xc+1

+
∞∑

n=2

an

{
(n+ c)2 − 1

4

}
xn+c +

∞∑
n=0

anx
n+c+2 = 0. (1.12)

Notice that the first term is the only one containing xc and similarly for the second
term in xc+1.

The two summations in (1.12) begin at the same power of x, namely x2+c. If we
let m = n+ 2 in the last summation (notice that if n = 0 then m = 2, and n = ∞
implies that m = ∞), (1.12) becomes

a0

(
c2 − 1

4

)
xc + a1

{
(c+ 1)2 − 1

4

}
xc+1

+
∞∑

n=2

an

{
(n+ c)2 − 1

4

}
xn+c +

∞∑
m=2

am−2x
m+c = 0.

Since the variables in the summations are merely dummy variables,
∞∑

m=2

am−2x
m+c =

∞∑
n=2

an−2x
n+c,

and hence

a0

(
c2 − 1

4

)
xc + a1

{
(c+ 1)2 − 1

4

}
xc+1

+
∞∑

n=2

an

{
(n+ c)2 − 1

4

}
xn+c +

∞∑
n=2

an−2x
n+c = 0.
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Since the last two summations involve identical powers of x, we can combine them
to obtain

a0

(
c2 − 1

4

)
xc + a1

{
(c+ 1)2 − 1

4

}
xc+1

+
∞∑

n=2

[
an

{
(n+ c)2 − 1

4

}
+ an−2

]
xn+c = 0. (1.13)

Although the operations above are straightforward, we need to take some care to
avoid simple slips.

Since (1.13) must hold for all values of x, the coefficient of each power of x must
be zero. The coefficient of xc is therefore

a0

(
c2 − 1

4

)
= 0.

Up to this point, most Frobenius analysis is very similar. It is here that the different
structures come into play. If we were to use the solution a0 = 0, the series (1.8)
would have a1xc+1 as its first term. This is just equivalent to increasing c by 1. We
therefore assume that a0 �= 0, which means that c must satisfy c2 − 1

4 = 0. This is
called the indicial equation, and implies that c = ± 1

2 . Now, progressing to the
next term, proportional to xc+1, we find that

a1

{
(c+ 1)2 − 1

4

}
= 0.

Choosing c = 1
2 gives a1 = 0, and, if we were to do this, we would find that we had

constructed a solution with one arbitrary constant. However, if we choose c = −1
2

the indicial equation is satisfied for arbitrary values of a1, and a1 will act as the
second arbitrary constant for the solution. In order to generate this more general
solution, we therefore let c = − 1

2 .
We now progress to the individual terms in the summation. The general term

yields

an

{(
n− 1

2

)2

− 1
4

}
+ an−2 = 0 for n = 2, 3, . . . .

This is called a recurrence relation. We solve it by observation as follows. We
start by rearranging to give

an = − an−2

n(n− 1)
. (1.14)

By putting n = 2 in (1.14) we obtain

a2 = − a0
2 · 1 .

For n = 3,

a3 = − a1
3 · 2 .
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For n = 4,

a4 = − a2
4 · 3 ,

and substituting for a2 in terms of a0 gives

a4 = − 1
4 · 3
(
− a0

2 · 1
)

=
a0

4 · 3 · 2 · 1 =
a0
4!
.

Similarly for n = 5, using the expression for a3 in terms of a1,

a5 = − a3
5 · 4 = − 1

5 · 4
(
− a1

3 · 2
)

=
a1
5!
.

A pattern is emerging here and we propose that

a2n = (−1)n
a0

(2n)!
, a2n+1 = (−1)n

a1
(2n+ 1)!

. (1.15)

This can be proved in a straightforward manner by induction, although we will not
dwell upon the details here.†

We can now deduce the full solution. Starting from (1.8), we substitute c = −1
2 ,

and write out the first few terms in the summation

y = x−1/2(a0 + a1x+ a2x2 + · · · ).
Now, using the forms of the even and odd coefficients given in (1.15),

y = x−1/2

(
a0 + a1x− a0x

2

2!
− a1x

3

3!
+
a0x

4

4!
+
a1x

5

5!
+ · · ·

)
.

This series splits naturally into two proportional to a0 and a1, namely

y = x−1/2a0

(
1 − x2

2!
+
x4

4!
− · · ·

)
+ x−1/2a1

(
x− x3

3!
+
x5

5!
− · · ·

)
.

The solution is therefore

y(x) = a0
cosx
x1/2

+ a1
sinx
x1/2

,

since we can recognize the Taylor series expansions for sine and cosine.
This particular differential equation is an example of the use of the method of

Frobenius, formalized by

Frobenius General Rule I
If the indicial equation has two distinct roots,
c = α, β (α < β), whose difference is an in-
teger, and one of the coefficients of xk becomes
indeterminate on putting c = α, both solutions
can be generated by putting c = α in the recur-
rence relation.

† In the usual way, we must show that (1.15) is true for n = 0 and that, when the value of a2n+1

is substituted into the recurrence relation, we obtain a2(n+1)+1, as given by substituting n+1

for n in (1.15).
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In the above example the indicial equation was c2 − 1
4 = 0, which has solutions c =

± 1
2 , whose difference is an integer. The coefficient of xc+1 was a1

{
(c+ 1)2 − 1

4

}
=

0. When we choose the lower of the two values (c = − 1
2 ) this expression does not

give us any information about the constant a1, in other words a1 is indeterminate.

1.3.2 The Roots of the Indicial Equation Differ by a Noninteger
Quantity

We now consider the differential equation

2x(1 − x)d
2y

dx2
+ (1 − x)dy

dx
+ 3y = 0. (1.16)

As before, let’s assume that the solution can be written as the power series (1.8).
As in the previous example, this can be differentiated and substituted into the
equation to yield

2x(1 − x)
∞∑

n=0

an(n+ c)(n+ c− 1)xn+c−2 + (1 − x)
∞∑

n=0

an(n+ c)xn+c−1

+3
∞∑

n=0

anx
n+c = 0.

The various terms can be multiplied out, which gives us
∞∑

n=0

an(n+ c)(n+ c− 1)2xn+c−1 −
∞∑

n=0

an(n+ c)(n+ c− 1)2xn+c

+
∞∑

n=0

an(n+ c)xn+c−1 −
∞∑

n=0

an(n+ c)xn+c + 3
∞∑

n=0

anx
n+c = 0.

Collecting similar terms gives
∞∑

n=0

an{2(n+ c)(n+ c− 1) + (n+ c)}xn+c−1

+
∞∑

n=0

an{3 − 2(n+ c)(n+ c− 1) − (n+ c)}xn+c = 0,

and hence
∞∑

n=0

an(n+ c)(2n+ 2c− 1)xn+c−1 +
∞∑

n=0

an{3 − (n+ c)(2n+ 2c− 1)}xn+c = 0.

We now extract the first term from the left hand summation so that both summa-
tions start with a term proportional to xc. This gives

a0c(2c− 1)xc−1 +
∞∑

n=1

an(n+ c)(2n+ 2c− 1)xn+c−1
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+
∞∑

n=0

an{3 − (n+ c)(2n+ 2c− 1)}xn+c = 0.

We now let m = n+ 1 in the second summation, which then becomes
∞∑

m=1

am−1{3 − (m− 1 + c)(2(m− 1) + 2c− 1)}xm+c−1.

We again note that m is merely a dummy variable which for ease we rewrite as n,
which gives

a0c(2c− 1)xc−1 +
∞∑

n=1

an(n+ c)(2n+ 2c− 1)xn+c−1

+
∞∑

n=1

an−1 {3 − (n− 1 + c)(2n+ 2c− 3)}xn+c−1 = 0.

Finally, we can combine the two summations to give

a0c(2c− 1)xc−1

+
∞∑

n=1

{an(n+ c)(2n+ 2c− 1) + an−1{3 − (n− 1 + c)(2n+ 2c− 3)}}xn+c−1 = 0.

As in the previous example we can now consider the coefficients of successive
powers of x. We start with the coefficient of xc−1, which gives the indicial equation,
a0c(2c − 1) = 0. Since a0 �= 0, this implies that c = 0 or c = 1

2 . Notice that these
roots do not differ by an integer. The general term in the summation shows that

an = an−1

{
(n+ c− 1)(2n+ 2c− 3) − 3

(n+ c)(2n+ 2c− 1)

}
for n = 1, 2, . . . . (1.17)

We now need to solve this recurrence relation, considering each root of the indicial
equation separately.

Case I: c = 0
In this case, we can rewrite the recurrence relation (1.17) as

an = an−1

{
(n− 1)(2n− 3) − 3

n(2n− 1)

}
= an−1

{
2n2 − 5n
n(2n− 1)

}
= an−1

(
2n− 5
2n− 1

)
.

We recall that this holds for n � 1, so we start with n = 1, which yields

a1 = a0

(
−3

1

)
= −3a0.

For n = 2

a2 = a1

(
−1

3

)
= −3a0

(
−1

3

)
= a0,
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where we have used the expression for a1 in terms of a0. Now progressing to n = 3,
we have

a3 = a2

(
1
5

)
= a0

3
5 · 3 ,

and for n = 4,

a4 = a3

(
3
7

)
= a0

3
7 · 5 .

Finally, for n = 5 we have

a5 = a4

(
5
9

)
= a0

3
9 · 7 .

In general,

an =
3a0

(2n− 1)(2n− 3)
,

which again can be proved by induction. We conclude that one solution of the
differential equation is

y = xc
∞∑

n=0

anx
n = x0

∞∑
n=0

3a0
(2n− 1)(2n− 3)

xn.

This can be tidied up by putting 3a0 = A, so that the solution is

y = A

∞∑
n=0

xn

(2n− 1)(2n− 3)
. (1.18)

Note that there is no obvious way of writing this solution in terms of elementary
functions. In addition, a simple application of the ratio test shows that this power
series is only convergent for |x| � 1, for reasons that we discuss below.

A simple MATLAB† function that evaluates (1.18) is
�

�

�

�

function frob = frob(x)
n = 100:-1:0; a = 1./(2*n-1)./(2*n-3);
frob = polyval(a,x);

which sums the first 100 terms of the series. The function polyval evaluates the
polynomial formed by the first 100 terms in the sum (1.18) in an efficient manner.
Figure 1.2 can then be produced using the command ezplot(@frob,[-1,1]).

Although we could now use the method of reduction of order, since we have
constructed a solution, this would be very complicated. It is easier to consider the
second root of the indicial equation.

† See Appendix 7 for a short introduction to MATLAB.
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Fig. 1.2. The solution of (1.16) given by (1.18).

Case II: c = 1
2

In this case, we simplify the recurrence relation (1.17) to give

an = an−1

{(
n− 1

2

)
(2n− 2) − 3(

n+ 1
2

)
2n

}
= an−1

(
2n2 − 3n− 2

2n2 + n

)

= an−1

{
(2n+ 1)(n− 2)
n(2n+ 1)

}
= an−1

(
n− 2
n

)
.

We again recall that this relation holds for n � 1 and start with n = 1, which gives
a1 = a0(−1). Substituting n = 2 gives a2 = 0 and, since all successive ai will be
written in terms of a2, ai = 0 for i = 2, 3, . . . . The second solution of the equation
is therefore y = Bx1/2(1−x). We can now use this simple solution in the reduction
of order formula, (1.3), to determine an analytical formula for the first solution,
(1.18). For example, for 0 � x � 1, we find that (1.18) can be written as

y = −1
6
A

[
3x− 2 + 3x1/2 (1 − x) log

{
1 + x1/2

(1 − x)1/2
}]
.

This expression has a logarithmic singularity in its derivative at x = 1, which
explains why the radius of convergence of the power series solution (1.18) is |x| � 1.

This differential equation is an example of the second major case of the method
of Frobenius, formalized by
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Frobenius General Rule II
If the indicial equation has two distinct roots,
c = α, β (α < β), whose difference is not an
integer, the general solution of the equation is
found by successively substituting c = α then c =
β into the general recurrence relation.

1.3.3 The Roots of the Indicial Equation are Equal
Let’s try to determine the two solutions of the differential equation

x
d 2y

dx2
+ (1 + x)

dy

dx
+ 2y = 0.

We substitute in the standard power series, (1.8), which gives

x

∞∑
n=0

an(n+ c)(n+ c− 1)xn+c−2 + (1 + x)
∞∑

n=0

an(n+ c)xn+c−1

+2
∞∑

n=0

anx
n+c = 0.

This can be simplified to give
∞∑

n=0

an(n+ c)2xn+c−1 +
∞∑

n=0

an(n+ c+ 2)xn+c = 0.

We can extract the first term from the left hand summation to give

a0c
2xc−1 +

∞∑
n=1

an(n+ c)2xn+c−1 +
∞∑

n=0

an(n+ c+ 2)xn+c = 0.

Now shifting the series using m = n+ 1 (and subsequently changing dummy vari-
ables from m to n) we have

a0c
2xc−1 +

∞∑
n=1

{an(n+ c)2 + an−1(n+ c+ 1)}xn+c = 0, (1.19)

where we have combined the two summations. The indicial equation is c2 = 0
which has a double root at c = 0. We know that there must be two solutions, but
it appears that there is only one available to us. For the moment let’s see how far
we can get by setting c = 0. The recurrence relation is then

an = −an−1
n+ 1
n2

for n = 1, 2, . . . .

When n = 1 we find that

a1 = −a0 2
12
,
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and with n = 2,

a2 = −a1 3
22

= a0
3 · 2

12 · 22
.

Using n = 3 gives

a3 = −a2 4
32

= −a0 4 · 3 · 2
12 · 22 · 32

,

and we conclude that

an = (−1)n
(n+ 1)!

(n!)2
a0 = (−1)n

n+ 1
n!

a0.

One solution is therefore

y = a0

∞∑
n=0

(−1)n
(n+ 1)
n!

xn,

which can also be written as

y = a0

{
x

∞∑
n=1

(−1)nxn−1

(n− 1)!
+

∞∑
n=0

(−1)nxn

n!

}

= a0

{
−x

∞∑
m=0

(−1)mxm

m!
+ e−x

}
= a0(1 − x)e−x.

This solution is one that we could not have readily determined simply by inspection.
We could now use the method of reduction of order to find the second solution, but
we will proceed with the method of Frobenius so that we can see how it works in
this case.

Consider (1.19), which we write out more fully as

x
d 2y

dx2
+ (1 + x)

dy

dx
+ 2y =

a0c
2xc−1 +

∞∑
n=1

{an(n+ c)2 + an−1(n+ c+ 1)}xn+c = 0.

The best we can do at this stage is to set an(n+c)2 +an−1(n+c+1) = 0 for n � 1,
as this gets rid of most of the terms. This gives us an as a function of c for n � 1,
and leaves us with

x
d 2y

dx2
+ (1 + x)

dy

dx
+ 2y = a0c

2xc−1. (1.20)

Let’s now take a partial derivative with respect to c, where we regard y as a function
of both x and c, making use of

d

dx
=
∂

∂x
,
∂

∂c

(
∂y

∂x

)
=
∂

∂x

(
∂y

∂c

)
.

This gives

x
∂2

∂x2

(
∂y

∂c

)
+ (1 + x)

∂

∂x

(
∂y

∂c

)
+ 2
(
∂y

∂c

)
= a0

∂

∂c
(c2xc−1).
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Notice that we have used the fact that a0 is independent of c. We need to be careful
when evaluating the right hand side of this expression. Differentiating using the
product rule we have

∂

∂c
(c2xc−1) = c2

∂

∂c
(xc−1) + xc−1 ∂

∂c
(c2).

We rewrite xc−1 as xc x−1 = ec log xx−1, so that we have

∂

∂c
(c2xc−1) = c2

∂

∂c
(ec log xx−1) + xc−1 ∂

∂c
(c2).

Differentiating the exponential gives

∂

∂c
(c2xc−1) = c2(log x ec log x)x−1 + xc−12c,

which we can tidy up to give

∂

∂c
(c2xc−1) = c2xc−1 log x+ xc−12c.

Substituting this form back into the differential equation gives

x
∂2

∂x2

(
∂y

∂c

)
+ (1 + x)

∂

∂x

(
∂y

∂c

)
+ 2

∂y

∂c
= a0{c2xc−1 log x+ xc−12c}.

Now letting c→ 0 gives

x
∂2

∂x2

∂y

∂c

∣∣∣∣
c=0

+ (1 + x)
∂

∂x

∂y

∂c

∣∣∣∣
c=0

+ 2
∂y

∂c

∣∣∣∣
c=0

= 0.

Notice that this procedure only works because (1.20) has a repeated root at c = 0.

We conclude that
∂y

∂c

∣∣∣∣
c=0

is a second solution of our ordinary differential equation.

To construct this solution, we differentiate the power series (1.8) (carefully!) to
give

∂y

∂c
= xc

∞∑
n=0

dan
dc
xn +

∞∑
n=0

anx
n xc log x,

using a similar technique as before to deal with the differentiation of xc with respect
to c. Note that, although a0 is not a function of c, the other coefficients are. Putting
c = 0 gives

∂y

∂c

∣∣∣∣
c=0

=
∞∑

n=0

dan
dc

∣∣∣∣
c=0

xn + log x
∞∑

n=0

an|c=0 x
n.

We therefore need to determine
dan
dc

∣∣∣∣
c=0

. We begin with the recurrence relation,

which is

an = −an−1(n+ c+ 1)
(n+ c)2

.
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Starting with n = 1 we find that

a1 =
−a0(c+ 2)

(c+ 1)2
,

whilst for n = 2,

a2 =
−a1(c+ 3)

(c+ 2)2
,

and substituting for a1 in terms of a0 gives us

a2 =
a0(c+ 2)(c+ 3)
(c+ 1)2(c+ 2)2

.

This process can be continued to give

an = (−1)na0
(c+ 2)(c+ 3) . . . (c+ n+ 1)
(c+ 1)2(c+ 2)2 . . . (c+ n)2

,

which we can write as

an = (−1)na0

∏n
j=1(c+ j + 1){∏n
j=1(c+ j)

}2 .

We now take the logarithm of this expression, recalling that the logarithm of a
product is the sum of the terms, which leads to

log(an) = log((−1)na0) + log


 n∏

j=1

(c+ j + 1)


− 2 log


 n∏

j=1

(c+ j)




= log((−1)na0) +
n∑

j=1

log(c+ j + 1) − 2
n∑

j=1

log(c+ j).

Now differentiating with respect to c gives

1
an

dan
dc

=
n∑

j=1

1
c+ j + 1

− 2
n∑

j=1

1
c+ j

,

and setting c = 0 we have(
1
an

dan
dc

)∣∣∣∣
c=0

=
n∑

j=1

1
j + 1

− 2
n∑

j=1

1
j
.

Since we know an when c = 0, we can write

dan
dc

∣∣∣∣
c=0

= (−1)na0

∏n
j=1(j + 1)(∏n

j=1 j
)2

 n∑

j=1

1
j + 1

− 2
n∑

j=1

1
j


 ,

= (−1)na0
(n+ 1)!

(n!)2


n+1∑

j=1

1
j
− 1 − 2

n∑
j=1

1
j


 .

In this expression, we have manipulated the products and written them as facto-
rials, changed the first summation and removed the extra term that this incurs.




